

TRANSFORMATIONS OF METHYL(PHENYL)- SUBSTITUTED 1,4-DIHYDRO-4- PYRIMIDINYLDENEMALONONITRILES UNDER ACTION OF NITRIC ACID

I. V. Oleinik and O. P. Shkurko

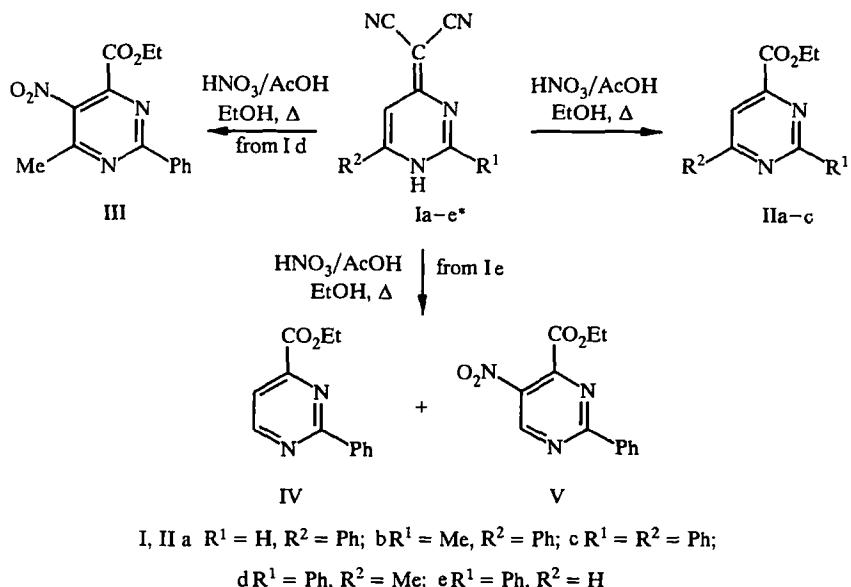
6-*Phenyl*-, 2-*methyl-6-phenyl*-, and 2,6-*diphenyl-4-pyrimidinyldenemalononitrile* in acetic acid react with HNO_3 to form the corresponding 4-ethoxycarbonylpyrimidines in high yields after treatment of the intermediate product with ethanol. Under the same conditions 6-*methyl-2-phenyl-4-pyrimidinyldenemalononitrile* yields 6-*methyl-5-nitro-4-ethoxycarbonylpyrimidine* whereas 2-*phenyl-4-pyrimidinyldenemalononitrile* gives a mixture of 2-*phenyl-4-ethoxycarbonyl*- and 5-*nitro-2-phenyl-4-ethoxycarbonylpyrimidine*.

We have previously found that 5-*methyl(phenyl)*-substituted 1,2-dihydro-2-pyrimidinyldenemalononitriles react with fuming HNO_3 in acetic acid medium and on subsequent treatment of the formed products with ethanol give the corresponding substituted 2-ethoxycarbonylpyrimidines in high yield [1].

In continuation of the study of reactivity of tautomeric derivatives of methylenedihydropyrimidines containing various functional groups in the side chain [1, 2], we have carried out nitration of 2(6)-*methyl(phenyl)*-substituted 1,4-dihydro-4-pyrimidinyldenemalononitriles (Ia-e). The compounds Ia-c, which contain phenyl substituent in the 6-position of the heterocycle, were found to behave like the 2-pyrimidinyl analogs [1], converting into the 4-ethoxycarbonyl-substituted derivatives (IIa-c) in 80-85% yield. Nitration was carried out with fuming HNO_3 in acetic acid medium. After the reaction was complete and acetic acid was removed, the mixture was refluxed in ethanol and the products were isolated.

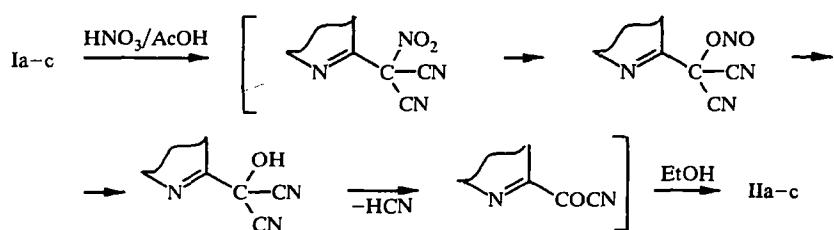
The corresponding 2-ethoxycarbonylpyrimidines were previously isolated in high yield from the analogous reaction of 5-*methyl(phenyl)*-substituted 1,2-dihydro-2-pyrimidinyldenemalononitriles [2].

In the present work we found that 4-pyrimidinyldenemalononitriles Ia-c, which contain phenyl substituent in the 2 or 6 position behave under the same conditions like the 2-pyrimidinyl analogs [2], giving 4-ethoxycarbonyl derivatives IIa-c in 80-85% yields.


In contrast to this, 6-*methyl-2-phenyl-1,4-dihydro-4-pyrimidinyldenemalononitrile* (Id) produces 4-ethoxycarbonyl-6-*methyl-5-nitro-2-phenylpyrimidine* (III) in 50% yield. The yield reaches 75% if a two-fold excess of HNO_3 is used. This difference in the behavior of Ic and Id is apparently due to the presence in the 6-position of methyl group, which exhibits electron-donating properties and also is less bulky than phenyl substituent in Ic and so does not hinder introduction of the nitro group in the neighboring 5-position of the pyrimidine ring.

Under analogous conditions, 2-*phenyl-1,4-dihydro-4-pyrimidinyldenemalononitrile* Ie gives a mixture of 4-ethoxycarbonylpyrimidine (IV) and its 5-nitro derivative V in a 2:1 ratio (according to PMR data). The ratio changes if an excess of HNO_3 is used.

The preferred formation of the 5-nitro-substituted 4-ethoxycarbonylpyrimidine III from the 6-methyl derivative Id, in contrast to Ie, which gives a mixture of IV and V, may be caused by the influence of the methyl substituent.



Novosibirsk Institute of Organic Chemistry of the Siberian Division of the Russian Academy of Sciences, Novosibirsk 630090, Russia; e-mail: benzol@nioch.nsc.ru. Translated from *Khimiya Geterotsiklicheskikh Soedinenii*, No. 3, pp. 361-364, March, 1999. Original article submitted January 5, 1998.

It should be noted that the reaction of 2-phenyl-1,4-dihydro-4-pyrimidinylidenecyanoacetic ester with HNO_3 in media of varying acidity results in nitration at the exocyclic double bond [2].

The probable mechanism of transformation of the malononitrile group of Ia-c into the ethoxycarbonyl group under the conditions used is analogous to that proposed by us previously for 5-substituted 2-pyrimidinylidenemalononitriles [1]. The mechanism involves nitration at the α -carbon atom of the ylidene tautomer. According to quantum-chemical calculations for the related 4-pyrimidinylidenecyanoacetic esters [3], the electron density at the α -carbon atom in the ylidene tautomer is significantly greater than in the aromatic form. The α -nitromalononitriles that are then formed convert into the corresponding α -hydroxy derivatives. The latter, being cyanohydrins, react with loss of HCN to give α -ketonitriles, which readily react with alcohol to replace the mobile CN group with ethoxy group [4].

The malononitrile moiety in Id and Ie probably reacts in a similar manner. However, the heterocycle is also nitrated.

In our opinion, the formation of 5-nitrosubstituted III and V may be caused by nitration of the ring of the starting malononitriles Id and Ie, the ylidene form of which is activated to electrophilic attack at the 5-position. Compounds Id,e apparently enter into the nitration in acetic acid as the unprotonated form, similar to 2-hydroxypyrimidines [5].

The composition and structure of the obtained products were confirmed by PMR, IR spectra and high-resolution mass spectrometry.

*The structural formula of the predominant tautomer of Ia-e is given.

EXPERIMENTAL

IR spectra were recorded on a UR-20 instrument in KBr pellets (0.25% concentration). PMR spectra were recorded on a Bruker WP-200 SY (200.13 MHz) instrument. Chemical shifts were measured relative to residual protons in the solvent (acetone-d₆, δ 2.04 ppm). High-resolution mass spectra were recorded on a Finnigan MAT-8200 spectrometer. The course of the reactions and the purity of the products was monitored using TLC on Silufol UV-254 plates.

The starting 4-pyrimidinylidenemalononitriles Ia-e were synthesized from the corresponding chloropyrimidines by the literature method [1].

4-Ethoxycarbonyl-6-phenylpyrimidine (IIa). Fuming HNO₃ (0.25 ml, 5 mmol, d = 1.5) was added dropwise to suspension of Ia (1.1 g, 5 mmol) in glacial acetic acid (50 ml) under stirring. The mixture was stirred for 0.5 h until the starting dinitrile disappeared (TLC control). Acetic acid was distilled off in a rotary evaporator. Ethanol (20 ml) was added to the residue. The resulting mixture was refluxed for 2 h. Ethanol was removed in a rotary evaporator. The residue was chromatographed on silica gel column using CHCl₃-hexane (2:1) eluent. Yield 1.12 g (85%) of IIa; mp 54.5-55°C, which agrees with the literature [6].

Compounds IIb,c and III were prepared from Ib-d in a similar manner.

4-Ethoxycarbonyl-2-methyl-6-phenylpyrimidine (IIb) (see also [7]). Yield 80%; mp 60-62°C (from hexane). IR spectrum: 1725 cm⁻¹ (C=O). PMR spectrum: 1.40 (t, 3H, OCH₂CH₃), 2.76 (s, 3H, CH₃), 4.43 (q, 2H, OCH₂CH₃), 7.48-7.55 (m, 2H, CH_{arom}), 7.58 (s, 1H, H-5), 8.20-8.30 (m, 3H, CH_{arom}). Mass spectrum, *m/z*: M⁺ 242.01683. C₁₄H₁₄N₂O₂. Calculated: 242.01679.

4-Ethoxycarbonyl-2,6-diphenylpyrimidine (IIc). Yield 85%; mp 116-118°C (from hexane). IR spectrum: 1750 cm⁻¹ (C=O). PMR spectrum: 1.44 (t, 3H, OCH₂CH₃), 4.49 (q, 2H, OCH₂CH₃), 7.42-7.78 (m, 7H, H-5 and CH_{arom}), 8.30-8.71 (m, 4H, CH_{arom}). Mass spectrum, *m/z*: M⁺ 304.12117. C₁₉H₁₆N₂O₂. Calculated: 304.12115.

4-Ethoxycarbonyl-6-methyl-5-nitro-2-phenylpyrimidine (III). Yield 1.15 g (80%); mp 84-86°C. IR spectrum: 1755 cm⁻¹ (C=O). PMR spectrum: 1.38 (t, 3H, OCH₂CH₃), 2.79 (s, 3H, CH₃), 4.47 (q, 2H, OCH₂CH₃), 7.47-7.71 (m, 2H, CH_{arom}), 8.40-8.60 (m, 3H, CH_{arom}). Mass spectrum, *m/z*: M⁺ 287.12619. C₁₄H₁₃N₃O₄. Calculated: 287.12621.

4-Ethoxycarbonyl-2-phenylpyrimidine (IV) and 4-Ethoxycarbonyl-5-nitropyrimidine (V). Treatment of Ie (1.1 g, 5 mmol) with fuming HNO₃ (d = 1.5), by the method described for Ia, yields mixture of IV and V (1.03 g) in the ratio 1:2 (according to PMR data). The products were separated on silica gel column (*l* = 35 cm, d = 1 cm) using CHCl₃-hexane 1:3 eluent. Yield 0.62 g (54%) of IV and 0.36 g (27%) of V.

Compound IV. Mp 66-67°C (from hexane). IR spectrum: 1745 cm⁻¹ (C=O). PMR spectrum: 1.41 (t, 3H, OCH₂CH₃), 4.45 (q, 2H, OCH₂CH₃), 7.89 (d, 1H, 5-H, *J* = 5 Hz), 7.49-7.61 (m, 3H, CH_{arom}), 8.47-8.57 (m, 2H, CH_{arom}), 9.11 (d, 1H, 6-H, *J* = 5 Hz). Mass spectrum, *m/z*: M⁺ 228.08979. C₁₃H₁₂N₂O₂. Calculated: 228.08987.

Compound V. Mp 102-103°C (from hexane). IR spectrum: 1740 cm⁻¹ (C=O). PMR spectrum: 1.41 (t, 3H, OCH₂CH₃), 4.52 (q, 2H, OCH₂CH₃), 7.53-7.71 (m, 3H, CH_{arom}), 8.47-8.60 (m, 2H, CH_{arom}), 9.67 (s, 1H, 6-H). Mass spectrum, *m/z*: M⁺ 273.07468. C₁₃H₁₁N₃O₄. Calculated: 273.07495.

The work was supported by the International Science Foundation and the Russian Government, grant NQN300.

REFERENCES

1. I. V. Oleinik and O. A. Zagulyaeva, *Khim. Geterotsikl. Soedin.*, No. 4, 503 (1993).
2. I. V. Oleinik and O. A. Zagulyaeva, *Sib. Khim. Zh.*, No. 4, 117 (1992).
3. I. V. Oleinik, Candidate Dissertation in Chemical Sciences, Novosibirsk Inst. Org. Chem., Sib. Div., Russ. Acad. Sci., Novosibirsk (1993).
4. E. N. Zil'berman, *Reactions of Nitriles* [in Russian], Khimiya, Moscow (1972), pp. 93, 413.
5. C. D. Johnson, A. R. Katritzky, M. Kingsland, and E. F. V. Scriven, *J. Chem. Soc. B*, No. 1, 1 (1971).
6. T. Sakamoto, T. Sakasaj, and H. Yamanaka, *Chem. Pharm. Bull.*, **28**, 571 (1980).
7. T. Sakamoto, T. Sakasaj, T. Ono, and H. Yamanaka, *Fukusokan Kagaku Toronkai Koen Yoshishu*, **12**, 181 (1979); *Chem. Abstr.*, **93**, 95228 (1980).